A Tauberian theorem for Cesaro and Abel summability
نویسندگان
چکیده
منابع مشابه
On Some Tauberian Conditions for Abel Summability
In this paper we introduce new Tauberian conditions for Abel summability method that include Hardy Littlewood Tauberian condition [4] as a special case. Mathematics Subject Classification: 40E05
متن کاملAn alternative proof of a Tauberian theorem for Abel summability method
Using a corollary to Karamata’s main theorem [Math. Z. 32 (1930), 319—320], we prove that if a slowly decreasing sequence of real numbers is Abel summable, then it is convergent in the ordinary sense. Subjclass [2010] : 40A05; 40E05; 40G10.
متن کاملA Tauberian Theorem for the Generalized Nörlund-euler Summability Method
Let (pn) and (qn) be any two non-negative real sequences with Rn := n ∑ k=0 pkqn−k 6= 0 (n ∈ N). And E1 n− Euler summability method. Let (xn) be a sequence of real or complex numbers and set N p,qE 1 n := 1 Rn n ∑
متن کاملA Tauberian Theorem for (C, 1) Summability Method
In this paper, we retrieve slow oscillation of a real sequence u = (u n) out of (C, 1) summability of the generator sequence (V (0) n (Δu)) of (u n) under some additional condition. Consequently, we recover convergence or subsequential convergence of (u n) out of (C, 1) summability of (u n) under certain additional conditions that control oscillatory behavior of the sequence (u n).
متن کاملH"{o}lder summability method of fuzzy numbers and a Tauberian theorem
In this paper we establish a Tauberian condition under which convergence follows from H"{o}lder summability of sequences of fuzzy numbers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae (Proceedings)
سال: 1979
ISSN: 1385-7258
DOI: 10.1016/s1385-7258(79)80038-4